Fisher’s linear discriminant (FLD) and support vector machine (SVM) in non-negative matrix factorization (NMF) residual space for face recognition
نویسندگان
چکیده
A novel method of Fisher’s linear discriminant (FLD) in the residual space is put forward for the representation of face images for face recognition, which is robust to the slight local feature changes. The residual images are computed by subtracting the reconstructed images from the original face images, and the reconstructed images are obtained by performing non-negative matrix factorization (NMF) on original images. FLD is applied to the residual images for extracting FLD subspace and the corresponding coefficient matrices. Furthermore, features are obtained by mapping the residual image to FLD subspace. Finally, the features are utilized to train and test support vector machines (SVMs) for face recognition. The computer simulation illustrates that this method is effective on the ORL database and the extended Yale face database B.
منابع مشابه
Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملLDA-based Non-negative Matrix Factorization for Supervised Face Recognition
In PCA based face recognition, the basis images may contain negative pixels and thus do not facilitate physical interpretation. Recently, the technique of nonnegative matrix Factorization (NMF) has been applied to face recognition: the non-negativity constraint of NMF yields a localized parts-based representation which achieves a recognition rate that is on par with the eigenface approach. In t...
متن کاملSupport Vector Machines for Object Recognition under Varying Illumination Conditions
We propose an appearance-based method for object recognition under varying illumination conditions. It is known that images of an object under varying illumination conditions lie in a convex cone formed in the image space. In addition, variations due to changes in light intensity can be canceled by normalizing images. Based on these observations, our proposed method combines binary classificati...
متن کاملA Comparative Review on Different Methods of Face Recognition
Face Recognition is a biometric system which can be used to identify or verify a person from digital image by using the facial features that are unique to each other. There are many techniques which can be used in a face recognition system. In this paper we review some of the algorithms and compare them to see which technique is better compared to one another. Techniques that are compared in th...
متن کاملA comparative study of NMF, DNMF, and LNMF algorithms applied for face recognition
Three techniques called non-negative matrix factorization (NMF), local non-negative matrix factorization (LNMF), and discriminant non-negative matrix factorization (DNMF), have been recently developed for decomposing a data matrix into non-negative factors named basis images and decomposition coefficients. Although these techniques are closely related to each other since they impose certain com...
متن کامل